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NON-LINEAR DIFFUSION

II. CONSTITUTIVE EQUATIONS FOR MIXTURES OF
ISOTROPIC FLUIDS

By J. E. ADKINS
Department of Theoretical Mechanics, University of Nottingham

(Communicated by A. E. Green, F.R.S.—Received 22 February 1963)
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In the preceding paper I (Adkins 1963) a theory for the diffusion and flow of fluid mixtures was
formulated based upon hydrodynamical considerations. It was assumed that the mechanical
properties of each constituent of the mixture could be described by means of constitutive equations
for the stresses occurring in the equations of motion for that constituent, while the effect of the
other components could be accounted for by the nature of the body forces in these equations.

In the present work, some of the restrictions previously imposed upon the constitutive equations
for the stresses and the body forces are removed. It is assumed that the stresses for a given con-
stituent may depend upon velocity and acceleration gradients for all components of the mixture
and that the body forces depend upon relative velocities and accelerations and upon velocity

gradients. Invariance requirements are discussed, attention being confined to mixtures of isotropic
fluids.

1. INTRODUCTION

In the preceding paper (part I) (Adkins 1963), a non-linear theory for the diffusion and flow
of mixtures of fluids has been formulated based upon purely hydrodynamical considerations.
The approach is essentially that proposed by Truesdell & Toupin (1960) and developed
further, for linear systems, by Truesdell (1961). Each point of a mixture of n substances is
assumed to be occupied simultaneously by the z constituents in given proportions. For each
substance we may then define, at a given point, mechanical and kinematic quantities such
as density, velocity, acceleration, a stress tensor and a body force vector. The mechanical
properties of each individual component are described by constitutive equations for the
stresses. Part of the body force acting on a given constituent is assumed to arise from the
diffusion process and is given by constitutive equations describing the composition of the
mixture and its motion.

[ ,Q
e
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636 J. E. ADKINS

In part I it has been assumed that the stresses for a given component & depend
only upon the density of & and upon kinematic quantities referring explicitly to that
substance; the diffusive forces were assumed to depend only on the composition of the
mixture at a given point and the relative velocities of its constituents.

In the present paper some of these restrictions are removed. In §3 the situation is
examined in which the stresses for a given constituent depend upon the velocity gradients
for all components of the mixture. In §4, rotationally independent time derivatives of
vectors and tensors are considered as a preliminary to an examination of the case in which
there is dependence of the stresses upon mixed acceleration gradients. The final sections
are concerned with constitutive equations for the body force vectors when mixed accelera-
tion components and velocity gradients are taken into account. It would be possible to
assume that the stresses also depend upon relative velocities and accelerations and the
modification which this entails is indicated in § 7.

Owing to the rapidly increasing complexity of the analysis, attention is confined to
situations in which only velocities and accelerations and their gradients are involved in the
constitutive equations, dependence upon higher-order time derivatives being excluded.
Furthermore, attention is concentrated throughout upon mixtures of isotropic materials.
The analysis follows the lines indicated by Green & Rivlin (1960) and by Green & Adkins
(1960) for single component systems; an alternative approach to the invariance problem
for such systems has been given by Coleman & Noll (1959).

2. NOTATION AND FORMULAE

We consider a mixture of z substances & (r=1,2,...,n) which are in motion relative
to each other, and assume that each point P within the mixture is occupied simultaneously
by the substances &, these being present in specified proportions.

We refer the motion to a fixed system of rectangular Cartesian co-ordinates x;, and
suppose that a particle of the substance % which is at y; at the current time £ was at the point
%9 atinitial time ¢ = 0. We assume that at the point y; at time ¢ the substance & has velocity
v, with components Y relative to the x; axes. These components are given by

r
e X} (1)
where @D/Di¢ denotes differentiation with respect to £ holding the co-ordinates x{” constant.

If the density of the substance & at y; is p,, the density of the mixture is

p= El Prs (2-2)
and the mean velocity v of the mixture at this point is given by
pv =20V, (23)
The operator WD/D¢ is given by
©“D 9 J

mp— ") _~ .
Di a9t "oy (2:4)
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NON-LINEAR DIFFUSION. II 637

where 9/d¢ denotes differentiation with respect to ¢ holding the co-ordinates y; constant;
here and subsequently summation is carried out over repeated indices unless otherwise
indicated. If we define the operator D/D¢ by

D 4 J

D 9;4‘”";@;» (25)
where v,, are the components of v, then from (2-2) and (2-3)
D n D
= Y 2-6
/0 Dt rgl lor Dt ( )

We note that in operating on any quantity ¢ = ¢() which is independent of position, and
therefore of y;, the operators @D/D¢ and D/D¢ reduce to d/dt.

We postulate that for each constituent <, there exists at y; a partial stress tensor e, with
components ¢f) and extraneous and diffusive body force vectors F,, ¥, with components
FP, W9 respectively referred to the x; axes. The force ¥, acting on the substance &, is assumed
to arise from the influence of the other constituents of the mixture. For each constituent
&, we may then formulate equations of motion

0% "Dy

— ) ")) — i . .
e +p,(FO+WP) = p, Di (r=1,2,...,n; r not summed), (2:7)
and an equation of continuity
dp, 0 o . "Dp, NP B .
W—{—a—yl( RO D +pra—yi~~-0 (r=1,2,...,n; r not summed). (2-8)

Equations (2-8) are modified if any of the substances .%, are removed or generated by
chemical reactions or other processes; such cases are excluded from the present work.

1t is assumed that diffusion effects can be accounted for by the nature of the body forces
¥, which therefore depend upon the composition of the mixture at the point P and upon
the relative motions of its constituents. The properties of the individual constituents of the
mixture are taken into account by the nature of the stress tensors o,. In the previous work
(part I), the assumption was made that the tensor o, depended only upon the density
p, and kinematic quantities defined for the substance %,; each of the body forces ¥, was
assumed to depend upon the densities py, p,, ..., p, and upon the relative velocities of the
constituents &. In subsequent sections we shall examine the consequences of more general
assumptions.

The functional forms of ¥, and o, are restricted by the consideration that the properties
of the mixture must beindependent of rigid body motions of the medium as a whole. A simple
technique for deriving the body force and stress components from suitably constructed
scalar functions has been given by Pipkin & Rivlin (1960). If p, q are arbitrary vectors
with components p,, g; respectively at the point y;, and we form the scalar functions

FO=p¥P, GO = p,q;0%, (2+9)
then W{ and ¢f) are given uniquely by
) 2G)
lll’gr) — oF ) — 0°G (2.10)

o "0 ooy
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638 J. E. ADKINS

The invariance problem then reduces to that of constructing scalar functions F©, G» of
the appropriate kinematic and mechanical tensors which are linear in p; and bilinear in
P> g, respectively, are homogencous in these quantities and which exhibit the required
invariance properties.

In subsequent work we shall confine attention to the situation in which all components
of the mixture are isotropic and the kinematic and mechanical tensors examined will be
those appropriate to the isotropic case.

3. DEPENDENCE OF STRESS UPON VELOCITY GRADIENTS

We examine first the situation which occurs when the stress components ¢%) depend upon
the velocity gradients dv’/dy; (s = 1,2,...,7). Since the stresses can be derived from scalar
functions G which are homogeneous and bilinear in the components ,, ¢, by means of
(2-10), it is sufficient to examine the form of the functions

¢=6(5r). (31)
Yi ‘
We assume that G is a polynomial in its arguments and since p,, ¢; are not involved in the
subsequent discussion we do not exhibit these arguments explicitly.
We consider a motion .#, of the body which differs from the actual motion .# defined by
(2'1) only to the extent of an arbitrary superposed rigid-body rotation. The co-ordinates

y; in the varied motion .#,, of the particle P, referred to the fixed Cartesian system «,, arc

given by b; = Myyy. (3-2)
Here M, == M, () are continuous functions of ¢ satisfying the conditions
MMy, = MMy, = 6y, |My| = 1, (3-3)

J;, being the Kronecker delta.
The velocity components 7 for the motion .#, are given by

W) =©Dy,/Dt, y, = ?i(x%), £). (3:4)
From (2-1), (3-2) and (3-4) we then have
W = My -+, DD (35)

if we remember that A; are independent of the co-ordinates ;.
From (3-3) we obtain
DM, DM,

]Mjm h])*;m' = M]Mim ng = O (SaY)7 (3'6)

and by making use of this relation and (3-2) in (8-5) we find that
09 = M;v9+o;7;. (3:7)

[/ %)

From (3-6) it follows that «; is skew symmetric, and if we define the vector €, = €, (¢) by
the equations v

9 ;= €L (38)
¢;; being the alternating tensor, we see that (), are the components of the superposed rigid
body motion referred to the x; axes.
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NON-LINEAR DIFFUSION. II 639
From (3-7) and (3-2) we have
ow o0 B o
ﬁ;w%k%l@l——"—dij (7'———1,2,...,72). (3 9)
) 1009 0 1 (000 0
rs) — — : k) — AGn (rs) — e TR Y sn) 10)
VVI‘ltll’lg Azk 2 (ayk + ayl) Akz s Wi 2 (ayk ayl) Wi’y (3 10)

and denoting by 4%, @42 the corresponding quantities with vf, v, y replaced by 79, 79,
respectively, we obtain from (3-9)

) (
@—m%wx} )
oy = My Mol -+
Hence o~ — My Mol —off?), (3:12)

where p, ¢, 7, s may take any of the values 1, 2, ..., #. Ifat the instant ¢ the two configurations.
represented by (2-1) and (8-2) coincide, M, = J; and
Ap = A, @7 = o+

all (3:13)

W5 — o = o) — ko, J
Returning to (3-1), we observe that since, from (3-10)

0
?_yz_._ — A%s) + w%s), (3 ‘1 4)

J

the function G may be expressed as a polynomial in the components A% and {®. Alter-
natively we may write G in the polynomial form

G — G4, o —olgP, o). (3-15)

From (3-13) the arguments 4%, 0% —w{® are independent of the angular velocity «;; of
the superposed rigid body rotation in the motion .#,, but v} depend upon «;. If, there-
fore, G is to be independent of the angular velocity of the superposed rigid body motion,

the arguments o” must be excluded and we may write

G = G(4%, o — ™). (3-16)

i

This form may be simplified if we observe from (3-10) that

A = A+ A5+ 0P~ QF], | (3:17)
(‘)(i?)'" &)Z-’") — %_[ A%jr)_ A%s) 4+ Q%)_}_ Qg) R
where QP = o — o™, (3-18)
We may therefore replace (3:16) by
G=GAP, Q) (r=12,..,n;5=1,2,...,n—1). (3-19)

The functional forms of G in (3-1), (3:16) and (3-19) are, in general, different.

From (3:19) we see that G may be expressed as a polynomial in the 6z components
A$D of the rate of deformation tensors and the 3n—3 components (4 expressing the rate
of rotation of #—1 constituents relative to the remaining constituent %,.

78 Vor. 255. A.
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640 J. E. ADKINS

As an alternative to the form (3:19) we may express G in terms of the gradients of the
relative velocities of the constituents of the mixture. If we write

Vg = 2 (i) (r), (3-20)
T 0y

we obtain from (3-9) Vi = My M, V5o, (3-21)
and from (3-20) and (3-10)
ihg

jyl;: Vim+ AP +ofm (r=1,2,...,n—1). (3-22)

The polynomial function (3-1) may therefore be reduced to the form
G = GV, 47, o), (323)

and in (3-23) only the arguments «{}” depend upon the angular velocity specified by a;;.
These must therefore be excluded, and we have

G =Gy, A9 (r=1,2,..,n—1). (3-24)

i

By the foregoing analysis, the 9n arguments dv{°/dy; occurring in the form (3-1) for G
have been reduced, in (3-19) to the 97— 3 components 477, ), and in (3-24) to the 9n—3
components Vi®, A7, This is consistent with the observation that the 97 arguments in
(3-1) involve the three parameters ¢;; defining the angular velocity of a rigid body rotation.
Elimination of these must, in general, reduce by three the number of independent variables
appearing in the form for G. From (3-10) and (3-20) we see that for a general deformation,
the arguments appearing in (3-19) or in (3-24) are mutually independent and we may
conclude that these forms contain no redundant elements.

Restoring the components p;, ¢;, we may infer that when the stresses ¢ are dependent

upon the velocity gradients dv{®/dy;, the functions in (2-10) may be written in the alternative
forms G = GO 4, g3 AL, Of), (3:25)
GO = GO p, q;; VEP, AZ")  (r,t=1,2,..,n;5s=1,2,...,n—1), (3-26)

ij
corresponding to (3-19) and (3-24), respectively. The functions G® in (3-25) and (3-26)
are polynomials in their arguments and homogeneous and bilinear in p;, g,
The forms (3-25) and (3-26) for G" are those appropriate toisotropic materials. This follows
from the fact that in the motion .#,, which incorporates the rigid body motion described
by (8-2) and (3'3), the arguments occurring in (3-25) and (3:-26) are replaced by the barred

uantities defined b — =
1 Y A = My M, A, QP = M, M, O,
Vi — My M, Vi,

bi=Mypr, G = Myq;.
If therefore the forms of G® are to be independent of rigid body displacements, that is,
of M, we must have

G = G, 753 A0, ) = G, ;3 AP, OF),

g g

G = G b, q;; Pm Zg!")) = GO(p, q;5 VEP, A7) (r,t=1,2,..,n;5=1,2,...,n—1),

ij ij
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NON-LINEAR DIFFUSION. II 641

and these relations imply that in each case G® is an isotropic function of its arguments.
The functions (3:25), (3:26) may be expressed as polynomials in the scalar invariants
formed from the appropriate system of vectors and tensors. An integrity basis for the system
of vectors and symmetric and skew symmetric tensors occurring in (3-25) may be deduced
from the work of Spencer & Rivlin (to be published).

4. ROTATIONALLY INVARIANT TIME DERIVATIVES OF TENSORS

As a preliminary to the incorporation of time derivatives of relative velocities, diffusive
force, velocity gradients and stress into the constitutive equations we construct forms for
the time derivatives of tensors and vectors which are independent of superposed rigid
body motions. The analysis follows the lines of that given by Green & Rivlin (1960) and
Green & Adkins (1960) for single component systems, but in the present instance the
existence of the n velocities v,,V,, ..., v, for the n components of the mixture needs to be
taken into account. ‘ '

We consider first a second-order tensor whose components at time ¢ during the motions
M, M, specified by (2-1) and (3-2) are

¢‘ij = %ij(ykb £), ;}ij = ¢ij(yk> £), (4-1)
respectively, with V= My My, (4-2)

the quantities M, = M, (f) satisfying (3-3). If the two configurations of the mixture at the
instant ¢ under consideration coincide, then M;, = J;, and ¥;; = ¢;.
The time derivatives ¥Dy;;/D¢ are not independent of rigid body rotations, for, from
4-2) we have ,
@2 “Dyy; _

®D DM DZ\{[,
Di M Mﬂ lekl‘f‘(juzk Di +‘}Mz Dt")%- (4'3)

However, with the help of (3:6), (3-9) and (4-2) we may obtain

sty 5
_}ﬁij %kl 5 (4'4)
zﬁ;}?(rst) = ¢-*(rst)
(rst) vy
where v Dt gy dy; i Yy, (4:5)
k@rst) (i)D%' . ¢_ (_?U_J(S«)’_ ) Qgﬁ_‘)
iy D¢ im aym mj aym 5

and 7, 5, t may take any of the integral values 1 to 7 inclusive.

From (4-4) we see that y§*?, %09 are independent of the angular velocity of superposed
rigid body motions. This is evidently true for any linear combination of these quantities,
and in particular for the tensor defined by

l{](rst) ( (st + ¢-*(rst)>
= ODY;[Di+ 9, 058 + Yy 05 , (4-6)

the second form following from (4-5) with the help of (3-10).
78-2
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642 J. E. ADKINS

A polynomial involving ¢;; and ®Dy;;/Dt may therefore be replaced by one involving
Yy 0v7[dy,, and one of the systems of elements ¢4, Y09 or ¢i*?. Not all of the latter are
required, however, for we may observe that

Y — V0 = Yo VD + 4y VD,

¢‘Z§(TS!)__ 1/-1?}?(1‘1761) S (,/,lm V;(%)) ‘Hﬁm] V(tq))’ ( 4,7)
7//1{;”0—3/’1{]@‘1) = Y (05 — EP) A i (Wi — 5D)
Furthermore Y0 = Dy, [Di+y 3o, (4-8)
“Dy; _ “Dyy; Dy ’
where, from (2-4) gt% = ]];gf“ - ]]:;zflf = (v —0%)) %;//L::, (4-9)
) (rs)D%i B Dy, .
and from (4-3) i~ MMy (4-10)

Corresponding relations hold for %% and y;¢s?.
From (4-7) and (4-8) we may write

rnD \
0 = B Oy, VP g VS,
mDy.
;;(rsz>:_m_@+<1>¢,§ Vi VD — 4, VD, (4-11)
e . DY O
o = BV Py 08,08,

D ) U(") av(n) .
where Oy =i = —%+¢”” Ay, Yy 9y, ®,
@Dy, v P
(Wt = yonn D;t#]_ ima—yl—— mi gy (ii),
. m m (412)
DYy _ (O, Oy
gt 2T Y
(n)D;é-z » nn PN
R S o o (i),

Higher-order time derivatives of the tensor ¢; may be incorporated into the analysis
in a similar manner. For example, corresponding to the first of (4:11) we may form the
derivative

1/-(!& S1tr2Saty)
iy

(rninD (rzn)D¢-ij (rln)D[(1)¢-] [¢)) (rzn)D¢-
D L D T + o

+(2)¢U _|_ Dt {¢m V(Szﬂ) + %m] V(tzn)} +(l)[¢-lm V(Jz m Vm] V(lz )
+ %%zsz 1) Vg;‘(x]n) + %%3_3‘2 ) V%Ixin)’ (4. 1 3)

where @ is obtained by replacing ¢;; by Wy in (4:12) (i) and @[ ] denotes the expression
obtained from (4:12) (i) by replacing y;; by the terms in square brackets. Corresponding
forms may be derived based upon %) and ¢;¢?.
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NON-LINEAR DIFFUSION. II 643

From (4-11) we observe that the system of derivatives ¥Dy;;/Df may be replaced by a
system involving the n—1 derivatives ¢”Dy;;/Dt together with one of the derivatives
Oy, Y or WDyt and terms not involving derivatives of ;. Similarly, in (4-13) the
system of n? second derivatives [*WD/D¢] [*9Dy;/Dt] (r),7, = 1,2, ...,n) is replaced by a
system of #2 second derivatives exemplified by the first four terms on the right-hand side
of this equation together with terms involving lower-order derivatives of ¢,;. In (4:13),
operators of the form ®D/D¢, ®D/Dt¢ for r & s do not, in general, commute, for if ¢ is any
differentiable function of y; and ¢

®D D  ©D ®D RO R
i (05 et 2 2 () __ 4(s) .
Dt Dt D¢ Dt]¢ [( may, o™ ay,,,) G )] (4-14)

A corresponding analysis may be carried out for a tensor of any rank. We may, in par-
ticular, write down the results for a vector whose components at time ¢ for the motions
M, M, specified by (2-1) and (3-2) are

Vi =V t)y ;=Y t), (4-15)
respectively, with v; = M v,. (4-16)

In this case, the first derivatives independent of rigid body rotations are

o — "Rvi +v m(?;);’ mg)%r(l)u +0,, V59, (4:17)
pEre — (r)]’?tvi . 32(8) (m)DU’—l—(l)v v, Vm, (4-18)
U9 = Lol 4 ¥ = f%)z& +(")-9 Yy QO (4-19)
where Wy, = v = (n)DD:i vm%q;%) )
Dy = y*m) — (")gt” mg;:) (4-20)
mgivi — 1 (W, +-Wy) = (")l])) Py o,

Each of the tensors §§, y¥0sd, oifrsd, Oy WYk O [Pt rsitvres:t) defined in (4-11),
(4-12) and (4-18) satisfies a transformation law of the form (4-2) and this remains valid if
¥,; is replaced by one of the kinematic tensors 4%, 0f? —w¥%?, V9 or Q) defined in §3, or
by the stress tensor ¢f. Similarly, each of the vectors vf®, vFes), ves), Wy, Wy¥, ©Py,/P¢
defined in (4-17) to (4-20) satisfies a transformation law of the form (4-16), and this remains
true if v; is replaced by one of the relative velocities v’ —¢{ or by the body force com-

ponents ¥,

5. DEPENDENCE OF STRESS UPON VELOCITY AND ACCELERATION GRADIENTS
From (2-1) we may define successive acceleration components for the substance &, at

P by the relations P
@ MDG-D y»
(2)1)({) _ (T)DU{ - (ﬁ)vgr) — i)_]z_%})_vl_ .

(5:1)

78-3
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644 J. E. ADKINS
More generally, we may introduce mixed time derivatives of the form
v(_sr) — (s)Dvgr) v(fsr) — (t_)D_._vgi’;)
! Dt ’ 7 Dt °
(6:2)
D ¢~ Dy,

,U(rq Fg—1ese71) —

Dt Dt >’ 7 D¢ 2

where 7,5,1,7,, ... may take any of the values 1,2, ...,n. From these expressions we may

form the gradients
v [0y, IV [0y, ...

For simplicity, we restrict attention to the case in which the stresses ¢ depend upon the
velocity gradients dv{’/dy; and the acceleration gradients dvy®/dy; and for this purpose it is
sufficient to examine the scalar function

1,2,...,n), (5-3)

() (st)
G:G(av’ 0t ) (r,8,t =

where G is a polynomial in the arguments indicated.
From (5-2), (2-4) and (3-10) we have

»D Agjs) 1 avg_pr) 01}]([79 av%) avgr) a’l)%)) 01)}5) 3\
Dt 2l dy; " 9y, 9y 9y, Oy 0ym]’

Di 200y 0y, 0y 9y, 0y, 0ym]’
and hence, remembering (3-18)
dupr DDA ODwi? 00D v
ayy, — Dt Dt Ty oy,
ODAGY WD  @Dwi®  0vd vy -
)Y D¢ Dt * dy; 0y, (5:5)

The functional form (5-3) may therefore be replaced by

coc (avg> (’DASY WDQW ODwi
dy;’ Dt * Di ° Dt

J

) (pyrys=1,2,..,n;t=1,2,...,n—1), (586)

the polynomial structure of G being preserved.
From (4-9) and (4-12), for the derivatives of tensor ¢;; we have the alternative expressions

Dy, >D¢J Lo P du
Dt ]ﬁzj %zm ay %m] 0?/

. Um)D%ij (), 31) n) av(n)

- mij‘“ + ij +¢zm aym +¢mj aym

(p”)DQﬁ ( )@qﬁi. .
- Dt Dt . ';ﬁimw%_?) %mj wﬁ;‘, ): (5'7)
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NON-LINEAR DIFFUSION. II

and in these formulae ¢;; may be replaced by 4% or (0. With the aid of (3-10), (4-9) and

(5-7) we infer that the form (5-6) may be reduced to one of the forms

G -G l?v(r) (6201 D) A(rr) (Im)DQ( ) (I)A(}.”’) O (pn)Dngn) (”)Da)g?”)
(?yj > Dt Dt ¥ 2 v Dt * Dt )’
(
G=0G (a_vgr_) #nD, Agr) “mD QS) M 4xen  HO*E) (_Im)D a)gm) @D (‘)i.r; n))
ayj 2 Dt 2 Dt 2 1] 2 ] b Dt 2 Dt 2

G G av(r) ®nD A(rr) <1m)DQ(s) mg A(rr) (n)gQ(S) ([m)Dw(nn) (n)Dw<nn)
“(ﬁ’Dt’Dt g1 @t Dt Dt

J

(r=1,2,..,n; p5s=1,2,...,n—1),

and if we make use of the reductions of § 3, these become

DA IDQY (D ODgm
G — G( A, QY B Dy , 0450, OO, th , th] , o
(D AGH DO  mDgen @D
G=0G (Agr), Qg), B " Di (I)Al??(rr), (I)ng(ﬁ, D;§J_~’ Dt’] W
G = cfam. 0o D Agfr) (I?H)DQ%) gy Agr) (n)@Qg.) (lm)Da)gm) (n)Dwgm)
verwe D 2 Dt o9t 2¢ 7 Dt Dt
. (r=1,2,...,0; p,5s =1,2,...,n
respectively.
From (3-11), by differentiation we have
Dy - ODw{ DM;, DM, D,
= . M M Zk) (rs) |~
Dt #Dt +( M) o+ g
(tnDigrs) (ﬁn)Dw(rs)
and therefore i Vo= My M, T

In the motion .#,, the quantities ¥Dw{”/D¢ thus depend upon the angular acceleration
De;/Dt of the superposed rigid body motion and the quantities »{}” depend upon the
angular velocity of this motion. They must therefore be omitted from the functional forms
(5-9) if G is to be independent of superposed rigid body motions. From (5-11), however,
we see that the quantities ®”Do{i”/D¢ may be retained. The function (5-3) may therefore

be reduced to one of the forms

(201 ) Ag.r.r) um)DQ() )Da)‘””)
G=0G (Ag'r), Qg), Di J R Di (I)A(rr) (I)Q(ﬁ) Ath ),

DAY eIDQY D
G =G (Agrr), QS), DF D 3] (I)A*(rr) (l)_(zl*(s) Di J_‘) ,

Ut "Dt Dt 9t ° 9t ° Di
(r=12,..,n;p,s=1,2,...,n—1).

G 6 ap, o, DA, D0, oA 670 +Daj

In (5-8) to (5-12) MAF", WY are obtained by replacing y¥;; by 477, O respectively in the

ij s

first of (4-12); WA, DQES), WP A0 D, WD Dt are derived 51mllarly from the second

and third of (4-12).
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646 J. E. ADKINS
Forms for G analogous to (3:23) may be derived by making use of the relations
2 A%r) — Vgn)+ ]’/J(f;n) +2 A%zn),
QQg) — Vz(}n)__ V{f_’n)

Jji o

(5-13)
which follow from (3:20). We may then replace the system of arguments 47", (7 by Vi»,
Af™ in (5-12). For example, the first of (5-12) yields

MDY (mD Ao
— ( (
G=0G (Vign), Ai}m), Di 7} s DtU

Dyen W gen 2D
, OPgm, MAnm, »T[»—) (p,r=1,2,...,n—1),

(5'14)

and corresponding expressions may be obtained from the second and third of (5-12).

It follows from the argument of § 3 that (5-12) and (5-14) must be isotropic functions of
their arguments. As before, explicit expressions for the stresses may be obtained by restoring
the components p,, ¢; to the forms in (5-12) and (5-14) and making use of (2-10).

6. DEPENDENCE OF DIFFUSIVE FORCE UPON VELOCITY AND ACCELERATION COMPONENTS

In the earlier work attention has been confined to the situation in which the diffusive
forces ¥, depend upon the composition of the mixture at the point y; and upon the relative
velocities of its constituents. We extend consideration here to the case in which accelerations
enter into the constitutive equations and examine the scalar functions

F=F@0, o) (o = ©Du®/Dy). (6-1)

In (6-1), Fis a polynomial in the arguments indicated which depends also upon the den-
sities p,. The latter are scalar quantities which do not affect the invariance problem and
are not exhibited explicitly.

If F is to be independent of rigid body translations the arguments in (6-1) must enter

as differences .
VD — 1, PP — 9, (6-2)

These are invariant under the transformation
¥, =y, +84(2), (6:3)

where ¢,(¢) are functions of ¢ independent of position, specifying a rigid body translational
motion. Itis sufficient to write / in the functional form

F=F (ugr), vﬁ”’ - vgnn))’ (64)
where U = v — ", (6°5)
This reduces by six the number of independent arguments in F consistent with the reduction
needed to eliminate the six components of velocity and acceleration dg;/dt, 9%¢,/0¢* of the
rigid body translation (6-3).

From (3-5) we see that

o . DM, , .. D2AM.
9 = Ml T (o4 00) + Ty (6:6)
. Dy
1t follows that if ars) = L= g — ™ — ) -,

Dt (6-7)

(rs) — o) (s7) — (s7)
birs) — virs) ___visr) —_ bisr R
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NON-LINEAR DIFFUSION. II ' 647
then ar = Myago, B = Mybg?, (6:8)
and since, from (6-7)

vgns) — Ug"”) — vg_sn) _ vg.nn) - bgsn),

vg_rs) _ l)g-”") — agrs) _ bgsn) + (v§rn) — v%nn)) + (vgsn) _ Ugnn)) ,
the function /' may be reduced to the form
F=FuP,dr, by, ofm —om)  (r,s =1,2,...,n—1). (6-9)

In (6-9) the differences vy —{™ depend upon the angular velocity of the rigid body
motion in .#,; this is also true of any linear combination of these differences provided
the velocities v, are linearly independent. Non-linear terms containing v —»{"” which are
independent of the additional motion may, however, be constructed. For example, if
we write B =y (05 — ) - o (pr — o)

®PD
— o7 () + B+ b, (6:10)

then since 7% = 4?4 we have B9 = B9, The polynomial function
F=F®up,dr, b, Br))  (r,s =1,2,...,n—1) (6:11)

is therefore a polynomial in the arguments contained in (6-4) or (6-9) which is independent
of the angular velocity and acceleration of the rigid body motion contained in .#,. For
independence of rigid body displacements, ¥ must be an isotropic function of its arguments.

7. DIFFUSIVE FORCE DEPENDENT UPON VELOCITIES, ACCELERATIONS
AND VELOCITY GRADIENTS

A more complete reduction can be achieved if we can assume that the diffusive forces
¥, or the function F, depends explicitly upon the velocity gradients dv{”/dy,. In this case
we write, in place of (6-1),

)1
F= F(vﬁ’), RN ‘ZL) (r,s =1,2,...,n), (7-1)
Y
and a reduction similar to that of § 6 leads to the form
v
F = F(u§”, a9, bym, yirm —yinm, @L) (rs=1,2,..,n—1;p=1,2,..,n), (7-2)
J
corresponding to (6+9).
From (6-7), (5:2) and (2-4) we now have
(rs) — 2,(1) Jy/(5) (8) —— () __ ()
a9 = w0y, (1 = o o)) )
oo — U iy, |
and (7-2) may be replaced by

F=Fup, b, 00Pldy;) (r=1,2,..,n—1;p=1,2,...,n). (7-4)
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648 J. E. ADKINS
A reduction following the lines of § 3 for the function (3-1) leads to the permissible forms
F=F (ugr), b§rn)’ Ag']p): Qgg)):
F= F(ugﬂs by, VZ’"): AZ"”) ‘(7‘ =L2,..,n—1;p=12,.., n),
for F corresponding to (3-19) and (3-24), respectively. As before, the functions (7-1), (7-2),
(7-4) and (7-5) are (different) polynomials in the arguments indicated and for independence
of rigid body displacements the forms (7-5) must be isotropic functions of their arguments.
An extension of the analysis to the case where the stresses 0§} are assumed to depend upon

relative velocities and accelerations is obtained by including the arguments #{, 5¢™ in the
forms for G derived in §§ 3 and 5.

(7°5)
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